USB-SL MZ MEMS CONTROLLER

USER GUIDE

Last Revised: Oct. 2020
Table of Contents

- Overview and Features
- Control & Connections of the Controller
- Various Ways of Control
- Terminal Commands
- Controller Cable Connections
- Connector Pinouts
- Embedded MEMS Driver
- The Development Kit
MEMS Controller **USB-SL MZ** – Overview

- Mirrorcle-designed MEMS Controller with a fast Microchip PIC32MZ MCU
- Its main function is to interface with user software, store prepared waveforms in a buffer, and run/output those waveforms in open loop to drive the MEMS mirror and peripherals
- Compatible with latest Software Suite 10.4 or newer
- Powered and controlled by USB
- Available as OEM Controller (provided as PCBs with no boxes or cables and require minimum order quantities)

OEM Dimensions: Approx. 87mm x 69mm x 20mm
Boxed Dimensions: Approx. 80mm x 115mm x 30mm
Weight: Approx. 140g
Features

- 4x (16-bit) Analog Outputs for X and Y axis control of MEMS mirrors
- Programmable hardware-based low-pass filters and protection circuitry to reduce the chances of device damage
 - Output bandwidth from 50Hz to 50kHz (governed by programmable filters)
- 8x Correlated Digital Outputs (3.3V) for controlling other components or systems
- Sample Rates up to 100,000 samples per second (100 kSPS)
- 500kB of Onboard RAM allows up to 100,000 samples to be stored
- 2x (12-bit) Analog Inputs with +/- 10V input range
- Flash Memory allows storage of settings and data for stand-alone operation (no PC)
- Sync Port for synchronization with additional Controllers or driving of laser peripherals
- USB Plug and Play support
- Separate analog input port for a laser tracking photosensor (with laser tracking bundle purchase)
- Wireless option (Add-On purchase) allows battery-run wireless operation over Bluetooth 16 bit outputs for X and Y axis control
Status LEDs & Connections

MEMS Driver Output Connector

MEMS Driver Status LED

Controller Status LED

Analog Inputs Connector

Sync Output/Input and Dev-kit Laser Connector

Digital Outputs Connector

USB Connector on Backside

Sensor Connector

NOTE: This port is only enabled with the purchase of the optional Laser Tracking Bundle
Several ways of communicating with the USB-SL MZ Controller are available, whether by USB interface or by Bluetooth interface with a PC or an Android or Linux device.
USB-SL MZ - Various Ways to Control

APIs in several languages

- Comprehensive APIs for generation of content (MEMS positions and correlated digital outputs), for control and streaming of the content, reading of analog inputs, synchronization with additional Controllers or peripherals, tracking, etc.
 - C++ SDK (Windows and Linux)
 - LabVIEW and Matlab SDKs
 - Python SDK (with Add-On purchase)
 - Java (Android) SDK (with Add-On purchase)
- Easy-to-use GUI and Console Applications such as MirrorcleDraw, MirrorcleLinearRaster, MirrorcleTrack, for various platforms (previous slide)

Serial Terminal Commands

- Serial port terminal commands are available for more basic MEMS mirror control without the use of the Windows, Android, Linux APIs.
USB Supply, Status LEDs & Wireless Option

- Please Note that the power supply (+5VDC) and fast communication is handled via the USB interface. To ensure proper operation, use the provided USB cable directly plugged into the PC instead of a USB hub (too long or not conforming cables could cause malfunction).

- Ensure proper USB or battery power supply. The USB voltage level has to be in spec (at least 4.7 V). If a USB port or a battery does not provide adequate supply, the Mirrorcle MEMS Controller card may respond to software commands but may not fully enable the MEMS Driver.

- The green status LED will light up after approx. 4 seconds when the device is ready. It will flash during communication. The red LED indicates the switched on MEMS Controller.

- With the optional Wireless Add-On, Bluetooth is used to communicate with the Mirrorcle MEMS Controller with almost all Android devices by using the powerful Android SDK. When used in wireless mode, power should be supplied to the USB input port from either a computer’s USB port or a 5VDC battery.

- For communicating with SoCs e.g. Arduino or Raspberry Pi, it’s possible to change the USRAT/Bluetooth interface baudrate of the processor between 115200 and 460800 Baud.
How to use Terminal Mode

- Please consider this mode is dedicated for experienced users only.
- Install Terminal Application (e.g. HyperTerminal, PuTTy)
- Connect the terminal application to the proper COM port.
- Enable/unlock the UART/terminal mode by entering ‘MTI’.
- Switch on displaying your commands (ECHO) by ‘MTI+EO\n\r’.
- Ensure proper hardware settings from their representative datasheets with ‘MTI+SetVbias 70\n\r’, ‘MTI+SetVdifferenceMax 100\n\r’, and ‘MTI+SetHardwareFilterBw 300\n\r’.
- Enable the MEMS Mirror driver with ‘MTI+EnableDevice\n\r’.
- Manipulate the output by steering the mirror: ‘MTI+GotoDevicePosition 0.45 -1.00 255\n\r’.
- Before quitting the terminal application, disable the MEMS driver by ‘MTI+DisableDevice\n\r’ and exit/lock the terminal/UART mode by the ‘MTI+Exit\n\r’ command.
- Please note that there are also short commands available.
- Type MTI+? For a complete list of available terminal commands.
Terminal Communication Table

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Command</th>
<th>Suffix (Return)</th>
<th>Short Command</th>
<th>Description</th>
<th>Reply</th>
<th>Reply Suffix</th>
<th>Example Terminal Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTI</td>
<td>\n or \r</td>
<td>\n or \r</td>
<td>Enter Terminal Command Mode</td>
<td>MTI-Device [name] Ready in command mode</td>
<td>\n</td>
<td>MTI\n</td>
<td>\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>Exit</td>
<td>\n or \r</td>
<td>EX</td>
<td>Exit Terminal Command Mode</td>
<td>MTI-Device Exit command mode</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>EnableDevice</td>
<td>\n or \r</td>
<td>EN</td>
<td>Enable MEMS Driver</td>
<td>MTI-OK</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>DisableDevice</td>
<td>\n or \r</td>
<td>DI</td>
<td>Disable MEMS Driver</td>
<td>MTI-OK</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>EnableDigitalOutput</td>
<td>\n or \r</td>
<td>ED</td>
<td>Enable Digital Output</td>
<td>MTI-OK</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>DisableDigitalOutput</td>
<td>\n or \r</td>
<td>DD</td>
<td>Disable Digital Output</td>
<td>MTI-OK</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>EnableModulation</td>
<td>\n or \r</td>
<td>EM</td>
<td>Enable Modulation for PD measurement</td>
<td>MTI-OK</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>GoToDevicePosition</td>
<td>\n or \r</td>
<td>GT</td>
<td>Mirror XY Position and Digital output M, Send 3 values: float float byte</td>
<td>MTI-OK</td>
<td>\n</td>
<td>MTI-GT 0.5 -.22 13\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>GetAnalogInputValue</td>
<td>\n or \r</td>
<td>GA</td>
<td>Replies with AI0 and AI1 values as floats, samples of both analog input channels</td>
<td>MTI-AI0:float AI1:float</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>GetPhotoDetectorValue</td>
<td>\n or \r</td>
<td>PD</td>
<td>Replies with AI0 value - AI0 value halfway through sample (laser is on half of sample and off half of sample) - Must be in SyncMode 2</td>
<td>MTI-AI0:float</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>EchoOn</td>
<td>\n or \r</td>
<td>EO</td>
<td>Echo mode on (displays keyboard input)</td>
<td>MTI-OK</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>EchoOff</td>
<td>\n or \r</td>
<td>EF</td>
<td>Echo mode off</td>
<td>MTI-OK</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>DisableConfirm</td>
<td>\n or \r</td>
<td>DC</td>
<td>Disable confirm reply after commands (only MTI-OK)</td>
<td>MTI-OK</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>EnableConfirm</td>
<td>\n or \r</td>
<td>EC</td>
<td>Enable confirm reply after commands</td>
<td>MTI-OK</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>SetVdifferenceMax</td>
<td>\n or \r</td>
<td>VD</td>
<td>Sets Maximum Voltage Difference, number between 0-200</td>
<td>MTI-OK</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>SetHardwareFilterBw</td>
<td>\n or \r</td>
<td>BW</td>
<td>Set Hardware Filter, number between 50-50000</td>
<td>MTI-OK</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>SetVbias</td>
<td>\n or \r</td>
<td>VB</td>
<td>Set Bias Voltage, number between 0-100</td>
<td>MTI-OK</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>SetSyncMode</td>
<td>\n or \r</td>
<td>SM</td>
<td>Set SyncMode, number between 0-6</td>
<td>MTI-OK</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>GetDeviceParams</td>
<td>\n or \r</td>
<td>GP</td>
<td>Get device parameters</td>
<td>MTI-[list of device parameters]</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
<tr>
<td>MTI+</td>
<td>Help</td>
<td>\n or \r</td>
<td>?</td>
<td>Lists all terminal commands</td>
<td>MTI-[list of all commands]</td>
<td>\n</td>
<td>MTI+\n</td>
</tr>
</tbody>
</table>

Description

- Previous command was invalid: MTI-ERR InvalidCommand
- Previous send data was invalid: MTI-ERR InvalidCommandData

Please note: MTI-OK reply can be disabled by DisableConfirm command
Controller Cable Connections

Our standard kits include:

- One high quality shielded USB-A to Mini-B 2.0 cable with a ferrite core filter
- Two 10-pin 1.27mm pitch ribbon cables at 6” inch & 12” inch lengths
 - Digikey Parts #: SAM8218-ND (6” version) & SAM8219-ND (12” version)
 - The controller is designed and tuned for MEMS Mirror driving only by this cable type, with a maximum length of 12”.
 - Any longer cable starts to degrade MEMS driver output signals.
 - In some cases, Mirrorcle can provide an engineering service in modifying the controller to drive a special customer cable.

Analog, Sync, and Sensor Port cables are not included. Those ports mate with following connectors based on their 0.1” pitch – alternatively jumper wires (1568-1513-ND) e.g. can be used:

- Analog Input Connector
 - Header Digikey Part #: A106219-ND
 - Mating Socket Digikey Part #: A30988-ND

- Synchronization & Sensor Connectors
 - Header Digikey Part #: A19451-ND
 - Mating Socket Digikey Part #: A30987-ND
Analog Inputs Connector Pinout

- 2x Analog Input Channels
 - Voltage Range: -10 V to +10 V
 - ADC Resolution: 12-Bit
 - Sample Rate: up to 100ksps (API sample rate setting)
 - +3.3V supply is for any external circuits related to Analog Inputs. Pin can be left open / floating when not in use
 - AI0, AI1 Input Impedance is approx. 36kΩ

<table>
<thead>
<tr>
<th>J7-Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>+3.3V Output, limited to 25mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Do not input 3.3V. Output Pin for Optional Customer Use)</td>
</tr>
<tr>
<td>2</td>
<td>AI0</td>
<td>Analog Input Channel 0</td>
</tr>
<tr>
<td>3</td>
<td>AI1</td>
<td>Analog Input Channel 1</td>
</tr>
<tr>
<td>4</td>
<td>Gnd</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Header Digikey Part #: A106219-ND
Mating Socket Digikey Part #: A30988-ND
The Synchronization port controls accessories e.g. Laser, Camera, etc.

The port’s middle Sync-pin can be set via software as an output to send start trigger, sample clocks.

This port’s middle Sync-pin can be set via software as an input to receive external sample clock or start triggers.

The default setting for this pin is a direct copy of DOut0.

The SYNC pin is limited to sourcing / sinking 3mA of current – depending on it’s operating mode of output or input.

<table>
<thead>
<tr>
<th>J6-Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>+3.3VDC Output, 70mA (Do not input 3.3V. Output Pin for Optional Customer Use)</td>
</tr>
<tr>
<td>2</td>
<td>SYNC</td>
<td>Pin Function set with MTISync Parameter</td>
</tr>
<tr>
<td>3</td>
<td>Gnd</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Header Digikey Part #: A19451-ND
Mating Socket Digikey Part #: A30987-ND
Sensor Connector Pinout

- This port is only enabled with the purchase of the Laser Tracking Bundle.
- The Sensor port powers the tracking bundle photosensor.
- The middle pin receives analog voltage from the photosensor which is amplified in the Controller before being processed by the MCU.
- This port’s middle pin should receive AC-coupled signals, and has a bandwidth of 1kHz up to 100kHz, to filter out ambient light in a room.
- AI2 Input Impedance is approx. infinite, capacitively coupled input.

Sync Connector: 3 - Pin Header

<table>
<thead>
<tr>
<th>J6-Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5VDC</td>
<td>+5VDC Output
(Do not input 5V, Output Pin for Optional Customer Use)</td>
</tr>
<tr>
<td>2</td>
<td>AI2</td>
<td>Tracking Sensor Input</td>
</tr>
<tr>
<td>3</td>
<td>Gnd</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Header Digikey Part #: A19451-ND
Mating Socket Digikey Part #: A30987-ND
Digital Output Connector Pinout

- The Digital Output connector has 8 digital outputs that are synchronous with the MEMS Driver sample output. (It enables to trigger accessories like cameras, lasers, etc.)
- Pin 1 can supply +3.3V, with a maximum current output of 25mA.
- Pins DOut0 – DOut7 can source 3mA of current per channel.

<table>
<thead>
<tr>
<th>J8-Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>+3.3V Output, limited to 25mA (Do not input 3.3V. Output Pin for Optional Customer Use)</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>DOut0</td>
<td>Digital Output Pin DOut0</td>
</tr>
<tr>
<td>4</td>
<td>DOut1</td>
<td>Digital Output Pin DOut1</td>
</tr>
<tr>
<td>5</td>
<td>DOut2</td>
<td>Digital Output Pin DOut2</td>
</tr>
<tr>
<td>6</td>
<td>DOut3</td>
<td>Digital Output Pin DOut3</td>
</tr>
<tr>
<td>7</td>
<td>DOut4</td>
<td>Digital Output Pin DOut4</td>
</tr>
<tr>
<td>8</td>
<td>DOut5</td>
<td>Digital Output Pin DOut5</td>
</tr>
<tr>
<td>9</td>
<td>DOut6</td>
<td>Digital Output Pin DOut6</td>
</tr>
<tr>
<td>10</td>
<td>DOut7</td>
<td>Digital Output Pin DOut7</td>
</tr>
</tbody>
</table>

Header Digikey Part #: 1175-1628-ND
Mating Cable Digikey Part #: SAM8219-ND
MEMS Output Connector Pinout

- 4x High Voltage Analog Output Channels
 - Voltage Range: 0V to 200V
 - DAC Resolution: 16-Bit
 - Sample Rate: up to 100ksps (API sample rate setting)
 - Do not probe header for Driver Output voltages, it can cause shorts and damage the driver.

<table>
<thead>
<tr>
<th>J5-Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HV_A (X+)</td>
<td>MEMS Channel X+</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>HV_B (X-)</td>
<td>MEMS Channel X-</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>HV_C (Y-)</td>
<td>MEMS Channel Y-</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>HV_D (Y+)</td>
<td>MEMS Channel Y+</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>LD+</td>
<td>Laser Diode (Anode)</td>
</tr>
<tr>
<td>10</td>
<td>LD-</td>
<td>Laser Diode (Cathode)</td>
</tr>
</tbody>
</table>

Header Digikey Part #: 1175-1628-ND
Mating Cable Digikey Part #: SAM8219-ND
Embedded MEMS Driver

- Embedded, sophisticated MEMS driver generates biased differential quad (BDQ) channel high voltage control signals.
- Driver Bandwidth is governed by hardware filters set in software – settings from 50Hz to 50kHz are accepted.
- Output Voltage Range (each channel): 0V - 200V
- BDQ driving provides linearization and smooth driving of MEMS mirrors over all four quadrants (bi-directional on both axes).

![Diagram showing HV_A and HV_B voltages and mirror rotation directions.](image)

- HV_B is high
- HV_A is low
- Mirror rotates in X- direction
- HV_A is high
- HV_B is low
- Mirror rotates in X+ direction
- Resulting Mirror X-axis Tilt
MTI’s Development Kit Enables Fast Setups

- Mirrorcle Technologies MEMS Mirror Development Kit allows a user to quickly and efficiently gain familiarity with all aspects of these devices and their various possible uses.
- It enables safe operation of the devices with specifically developed software and MEMS driver solutions which include several levels of protection for the MEMS devices.
- Display a variety of vector graphics as well as animations at arbitrary refresh rates.
- Mirrors can be operated in point-to-point (quasi-static), resonant or hybrid modes.
- The system is highly adaptable to projection on various surfaces and in a variety of applications.
Thank you for Choosing

That’s it! Thank you for reading through this guide.

If you have any further questions or suggestions please email us:

support@mirrorcletech.com